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Abstract

The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quanti-
tative NMR spectroscopy e.g. in the pharmaceutical and food industries.

This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal
Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, buta-
nol and pentanol) "H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of
larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and
exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful
method for resolving pure component NMR spectra from mixtures when certain conditions are met.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

NMR is a unique and versatile spectroscopic method
capable of measuring samples in the solid, liquid and gas
phases. No other spectroscopic method contains equally
detailed structural and dynamic information about chemical
systems under investigation. However, a serious challenge in
NMR spectroscopy lies between the technical capacity to
generate data (such as in NMR metabonomics) and the
human capacity to interpret and integrate these data [1]. In
complex systems such as biofluids, a wide range of compo-
nents (metabolites, acids, proteins, carbohydrates, etc.) are
present with a majority of overlapping resonances distrib-
uted over several thousand data points [2]. This amount of
data is difficult, if not impossible, to interpret.

The study of more complex systems, such as biofluids is
characterised by many hidden relationships. To find these
hidden relationships in complex data, experimental design,
unsupervised data exploration and data mining techniques
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are required. Chemometrics is a multivariate data analysis
field using statistics to compute models for extracting chem-
ical information from large two-dimensional multivariate
data sets. Development of chemometric data models
requires a minimum of assumptions and the relationships
may be visualised by intuitive illustrations by the graphic
computer interface.

We have chosen a ternary model design with three sim-
ple linecar water soluble alcohols containing different
amounts of hydrocarbons with highly overlapping reso-
nances. Using this design we can explore subtle differences
in the methylene peak—a simplified simulation of one of
the major metabolomic applications of NMR, namely lipo-
protein profiling of blood. Besides lipid and lipoprotein res-
onances, the 0.7-1.5 ppm chemical shift region in blood
plasma is characterised by many overlapping signals from
small organic species [3]. Spectral assignments in this
region have been limited by the extensive chemical shift
overlap and by the broadness of the signals. Similar spec-
tral problems may be encountered in organic or pharma-
ceutical samples when identifying impurities that mimic
the compound of interest.
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The first application of chemometrics to NMR spectra
appeared in 1983 by Johnels et al. [4]. In the early nineties
Gartland et al. [S]introduced PCA to classify proton NMR
spectra of urine. The same group also introduced the
research branch metabonomics defined as: “understanding
the metabolic responses of living systems to pathophysio-
logical stimuli via multivariate statistical analysis of biolog-
ical NMR spectroscopic data” [6] or just “metabolic
processes studied by NMR spectroscopy of biofluids™ [1].
Impetus for the coupling of NMR spectroscopy with mul-
tivariate data analysis was clearly the terribly complex met-
abolic system in body fluids that gives rise to equally
complex NMR spectra. Chemometrics were also applied
early on for exploration of solid-state MAS NMR spectra
[7]. Now chemometrics is rapidly gaining momentum in the
analysis of NMR spectra [8-10] and this work aims to pro-
vide an understanding of some of the useful property of
basic chemometric tools by their application to a designed
set of alcohol mixture NMR spectra.

2. Materials and methods

Principal component analysis and multivariate curve
resolution

Principal component analysis (PCA) [11] is the funda-
mental method in chemometrics. In PCA the data collected
on a set of samples is resolved into principal components.
The first principal component is defined by the spectral
profile (loading) in the data which describes most of the
variation, the second principal component is the profile
describing the second most of the variation orthogonal to
the first, and so on. Later components describe less varia-
tion and are more uncertain than the first components,
because the systematic variation is primarily described in
the first components. Deciding the right number of compo-
nents is a most important issue and will be described for
both PCA and MCR although for PCA, the choice is often
less critical especially in exploratory studies because the
first and most important component will not change as a
function of the number of components chosen. The princi-
pal components are composed of so-called scores and load-
ings. Loadings contain information about the variables
(chemical shifts) in the data set and the scores hold infor-
mation on samples (concentrations) in the data set. For a
given principal component, the loading vector is a spectral
profile and the score for each sample is the amount of that
particular loading in the sample in a least squares sense.
Thus, the sum of loadings weighted by a certain sample’s
score values will provide an approximation of the spectrum
of that sample. The similarity to Beers law is apparent as
each measured spectrum is hence described by varying
amounts of the same few underlying spectral loadings.
The individual loadings, though, will mostly not resemble
real chemical spectra due to orthogonality constraints of
the scores and loadings, but the peaks in a loading are
indicative of large spectral variation in the data. Thus,
the loadings indicate which parts of the spectrum represent

the main variation amongst the samples. The scores, on the
other hand, provide information about the extent to which
the spectral information represented by the loadings are
high or low for particular samples. Hence, the scores can
be considered as concentrations of multivariate, so-called
latent, variables.

As the number of spectral components in a data set is
typically much lower than the number of chemical shifts,
the whole data set can for the most part be represented
by a few (typically much less than 10-20) components that
still represent the full chemical variation in the data. The
scores are often plotted against each other in a scatter plot
giving a ‘map’ of all the samples in the score plot. Samples
that are grouped in a score plot are spectrally similar with
respect to the selected principal components. One of the
strengths of PCA is to provide a quick unsupervised view
of the samples and thereby to identify samples that exhibit
deviating features (outliers) or discover trends and groups
in the samples. Prior to PCA modelling, data are centred
by subtracting from every chemical shift value the average
value at that particular shift calculated across all samples.

An alternative method to PCA is decomposition of the
data matrix by multivariate curve resolution (MCR) using
alternating least-squares (ALS) [12] which has also been
named molecular factor analysis (MFA) along with a num-
ber of other names [13-15]. Principal component analysis is
mostly used for exploration and classification and cannot
normally provide direct estimates of real chemical spectra
and concentrations because the loadings and scores are
constrained to be orthogonal. MCR-ALS on the contrary
can offer resolution of the spectra into the ‘true’ underlying
components, i.e. the pure spectra. Huo et al. have proved
that multivariate curve resolution was able to provide
unique pure spectra and pure decay profiles from DOSY
NMR data [16].

An appealing property of MCR is that the solution
often looks much more ‘chemical’ than a PCA solution,
because imposed non-negativity constraints make the spec-
tral and sample profiles be positive. This often leads to
oversimplifying interpretations where the solution is
assumed to be real estimates of chemical spectra and their
relative concentrations. However, the MCR solutions are
generally not unique, hence the solution can be assumed
to be just one arbitrary solution out of an infinity of equally
well-fitting possible nonnegative solutions. The problem is
due to the so-called rotational ambiguity [17] and even
though imposing non-negativity helps removing some
ambiguity it is not enough to guarantee uniqueness in gen-
eral. This can only be achieved if the data have certain
characteristics such as selective variables where only some
analytes are present or samples where some analytes are
absent [17].

Hence, for any specific MCR solution, uniqueness must
be assessed before the solution can be assumed to be pro-
viding estimates of real chemical analytes. Uniqueness
can be assessed in different ways, but in this investigation
the model was simply restarted several times using different
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sets of random initial parameters and was verified to pro-
vide the same solution. There are other tools for multivar-
iate analysis with a similar aim as MCR, such as direct
exponential curve resolution algorithm (DECRA) [18] but
these are not applicable to the type of matrix-data (2D) dis-
cussed here.

2.1. NMR data

The experimental design is a ternary design of mixtures
of the linear alcohols: propanol, butanol and pentanol
[13,19]. Each alcohol component (50 mM) has 21 concen-
tration levels in increments of five from 0% to 100%. The
samples were prepared from 495 pl of the mixture and
55 ul of D>O (with 5.8 mM of TSP-d, (per-deuterated 3-tri-
methylsilyl propionate sodium salt) (Fig. 1).

"H NMR spectra were recorded for each of the 231 mix-
tures. The spectra were acquired on a Bruker Avance Ultra
Shield 400 spectrometer (Bruker Biospin Gmbh, Rheinstet-
ten, Germany) operating at 400.13 MHz using a broad
band inverse detection probe head equipped with 5 mm
(0.d.) NMR sample tubes. Data were accumulated at
298 K employing a pulse sequence using presaturation of
the water resonance during the recycle period followed by
a composite 90° pulse [20] with an acquisition time of 4 s,
a recycle delay of 20 s, eight scans and a sweep width of
8278.15 Hz, resulting in 64k complex data points. All sam-
ples were individually tuned, matched and shimmed. Prior
to Fourier transformation, each FID was apodised by
Lorentzian line broadening of 0.30 Hz and the correspond-
ing spectra were automatically phased and baseline cor-
rected and referenced to TSP-dy. In order to secure
quantitative measurements the receiver gain was set con-
stant for all the samples.

Propanol
100%

Butanol 50% NN NN
Propanol 50% AN ININ NN

W/ \/ ’ VIRV AV, “/" \_,";\‘f N/
Butanol / Gl N y “\_,"\.q,’ A NANANINAN ’\Pemanol
100% Butanol 50% 100%
Pentanol 50%

Fig. 1. Tri-axial experimental design of propanol, butanol and pentanol.
Each alcohol component has 21 different levels in increments of 5 from 0%
to 100%, 231 samples in total. The corners of the triangle represent 100%
of the pure alcohol. The triangle with the dashed line shows the reduced
experimental design of 66 samples.

Prior to the chemometric analysis the raw proton NMR
spectra data matrix to be investigated had the dimensions
(231 x 65,536) but was reduced to 14,000 data points
(3.85 —0.65 ppm) in order to remove the water signal and
make the investigation more efficient. No further pre-pro-
cessing or alignment of the data such as co-shifting and
warping [21] proved necessary.

The NMR spectra of the 231 alcohol mixtures results in
only four specific signals (Fig. 2). The spectrum of pure
propanol yields a triplet at 0.90 ppm from the CHj, a quin-
tet at 1.55 ppm from CH, and a triplet at 3.57 from the
CH, next to the OH group. Similar assignments apply to
butanol and pentanol, but they also contain aliphatic
CH,s with chemical shift in the range 1.30-1.35 ppm. The
spectra of pure propanol, butanol and pentanol are dis-
played in the bottom of Fig. 2.

3. Results

Using PCA the raw 231 '"H NMR spectra was decom-
posed into principal components to describe the systematic
variation in the spectra. The data is mean centred prior to
PCA, which means that the mean spectrum is subtracted
from the individual sample spectra. This simple pre-trans-
formation provides spectra that show the deviation from
the average spectrum. PCA results in an almost perfect
recovery of the ternary experimental design by the two first
PCs, as seen by the score plot in Fig. 3.

Fig. 3 shows the scores and the loadings (of component
one and two) of the PCA model where the scores are col-
oured by the propanol content. The first two components
together describe 98% of the variation in the spectra. The
2% of the variation that remains to be explained appears
non-systematic, hence due to noise. The loadings of the
first two components (PC#1 and PC#2) are displayed in
the corresponding loading plot. The first loading describes
the overall data structure of the NMR spectra which before
mean centering of the spectra are similar to the average
spectrum. Upon mean centering, the first loading will
change to describe the main variation of all centred data.
The fact that the scores are negative is due to the centering
as well as the imposed orthogonality that also indirectly
causes the loadings to be negative. This clearly illustrates
that PCA does not provide estimates of real chemical ana-
lytes. However it is also clear that the scores are (linearly)
related to the true concentrations (compare Fig. 3, left and
Fig. 1), and it is also clear that the loadings reflect the
underlying spectral variation.

Apparently only two principal components are neces-
sary to describe all the variation in the spectra, but this is
due to the principle of closure specific to these data, i.e.
that the concentration of any chemical component in a
sample is defined by the remaining two because they add
up to 100%. The ternary experimental design is reflected
in the score plot which reveals the direct proportional sig-
nal intensities with analyte concentrations. Had the data
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Fig. 2. (Top) NMR spectra of the 231 alcohol mixtures from 3.85 to 0.65 ppm. The NMR spectra of mixtures show highly overlapping signals. (Bottom)
The 'H NMR spectra of the pure alcohol samples of propanol, butanol and pentanol.
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Fig. 3. Scores and loadings plot of the first two principal components from a PCA model calculated on mean-centred NMR spectra. For increased
interpretability the score plot is coloured according to the propanol content. The first two principal components explain 97.8% of the variation.

not been centred, three components would be needed to
describe the data [22].

In order to pursue the purpose of resolving overlapping
resonances from CH, and CHj groups, the focus of the
analysis is restricted to the methyl groups with chemical
shifts around 0.9 ppm. As is obvious from Fig. 2, the reso-
nances of the alcohols differ slightly in chemical shift as
well as in line width. Our strategy is to perform the chemo-
metric analysis on the restricted data set (0.85-0.95 ppm)
representing a region with significant spectral overlap and
compare it with results obtained on the full spectrum
(3.85-0.65 ppm). The result in Fig. 4 is convincing; the

PCA model recovers the ternary experimental design based
on spectra of the methyl groups alone. Still, as evidenced
by the loading plot, PCA cannot provide real estimates
of the pure analyte spectra and concentrations.

MCR is an alternative multivariate data analytical
method that can potentially decompose a data set into pure
spectra and concentration profiles. The number of compo-
nents to be extracted can be assessed by looking at the
explained variance as a function of number of components,
similar to how the number of components is often deter-
mined in PCA. Furthermore, visual interpretation of the
results is often used as a practical guide in assessing the
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Fig. 4. Scores and loadings plot of the first two principal components from a PCA model calculated on mean-centred NMR spectra (0.85-0.95 ppm). For
increased interpretability the score plot is coloured according to the propanol content. The first two principal components explain 96.9% of the variation.

validity of a given model. From Fig. 5 it is obvious that a
model with three components is optimal, considering that
the variance explained is over 99% and almost remains con-
stant when using more than three components. This is also
consistent with the fact that the samples are mixtures of
three analytes. That 99% variance explained is adequate
can be further assessed and validated by comparing with
the intrinsic noise in the data (not shown).

The MCR model with three components is calculated
without mean centering the data as is usual in MCR. Look-
ing at a scatter plot of the scores from the MCR model, the
triangle now shows perfect concentrations (Fig. 6). The
slight non-ideality observed in the triangle, can be attrib-
uted to noise in the spectra and small uncertainties in the
alcohol concentration. Non-negativity of estimated con-
centrations and spectra is imposed as part of the model.

The loadings from MCR shown in Fig. 6 resemble spec-
tra of each of the pure alcohol compounds. By repeating
the estimation of the MCR model many times from differ-
ent random starting points, it is verified that the same fit
and solution is obtained (results not shown). Hence, the

100
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1 2 3 4 5
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Fig. 5. The bar plot show the percentage explained variance as a function
of number of components. Using three components, 99.7% of the
variation is explained.

solution can be assumed to be unique. Like PCA, each
sample has a score for each of the loadings. The score is
simply the amount of the corresponding loading, and as
the loadings can be considered as estimates of real spectra,
then the scores are then (relative) estimates of the concen-
trations. These scores are compared with the ‘true’ value
(i.e. the concentration of the three alcohols) by plotting
them against each other, yielding three correlation coeffi-
cients higher than 0.99.

The results above are encouraging and imply that com-
plex mixture NMR spectra can be separated mathemati-
cally into the underlying constituents. However, the main
reason that the results are as good as they are is the pres-
ence of pure samples in the sample set. The presence of
pure samples adds selectivity in the data. Selectivity means
samples or variables for which only one analyte is present.
This is one of the key requisites for obtaining uniqueness in
MCR.

To demonstrate how well MCR can model more com-
plex data, a model is calculated on a reduced experimental
design of only 66 samples where no spectra of pure alcohols
exist. The simplest samples in this reduced design consist of
mixtures of at least two of the alcohols. The result is that
the triangle of the experimental design is fully recovered
and the three concentration profiles still yield correlations
over 0.99 to the true concentrations.

However, the loading are not as perfectly resolved as in
the full design, which is due to the overlap of the signals
from the alcohols. This is particularly apparent in the spuri-
ous propanol peak in Fig. 7 at 0.8 ppm. Apparently the
MCR model determined on this dataset is unique. Repeat-
ing the model estimations more than 1000 times from differ-
ent starting points all lead in 74% of the cases to the same
local solution which is spectrally correct (Fig. 7, left). How-
ever in 19% of the cases the global model, which explains
almost the same variance but is spectrally incorrect, is the
result (Fig. 7, right). This result represent the Achilles’ heal
of MCR when applied to unknown systems. The best model
may not be the correct one in the physical sense.
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Fig. 6. Scores of the first three components (left) and loading plot (right) of the three components from the MCR model, obtained on the NMR spectra.
The two components explain 98.1% of the variation. The score plot shows a perfectly equilateral triangle.
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Fig. 7. Plot to the left show the loading of the three components from the local MCR model. This local solution is spectrally correct and is the result in
74% of the cases. The loading plot to the right is obtained from the global model which is the result in 19% of the cases. These loadings are mixtures of the

loadings of the three pure alcohols.

4. Conclusions

The main objective of this work was to show how prin-
cipal component analysis and multivariate curve resolution
can be useful in the investigation of highly overlapping
data from NMR studies. While it has been shown that
PCA can be used to provide a comprehensive overview of
complex data with many variables, it was also shown that
there are some limits on the usefulness of PCA. The MCR
method was demonstrated to possess the powerful ability
to separate mixtures into pure spectra and concentrations
even for much reduced designs. By applying the basic che-
mometric methods to a well defined ternary experimental
design of "H NMR spectra the potential and characteristics
of chemometric multivariate data analysis were demon-
strated. It should be obvious that perhaps the greatest
advantage of chemometrics is the simplicity by which even
large data structures are analysed and visualised and
thereby adding an exploratory dimension to modern
NMR science. We have shown which results can be
expected when applying quantitative chemometric methods

to multivariate high resolution NMR data and our future
research will focus on how MCR can perform on more
complex metabonomic data.
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